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Introduction

Past:
Time-stamped control sequences

Future:
On-board intelligence

+ Can respond to unanticipated
scenarios!

– How do we verify all those
scenarios?

Remote Agent
In flight on DS-1, May 99
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Outline

• Model-Based Autonomy and Livingstone

• Symbolic Model Checking and SMV

• Verification of Livingstone Models
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Model-Based Autonomy

Goal: "intelligent" autonomous
spacecrafts
– cheaper (smaller ground control)

– more capable (delays, blackouts)

• General reasoning engine +
application-specific model

• Use model to respond to
unanticipated situations

• For planning, diagnosis

• Huge state space,
reliability is critical

Reasoning
Engine

Model

commands status

Spacecraft

Autonomous controller

model of
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MRMI
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Discretized
Observations

Mode 
updates

Goals
Model

Reconfig 
Command

current state

Plan Execution System

High level operational plan 

Livingstone

Courtesy Autonomous Systems Group, NASA Ames

Livingstone

Remote Agent's model-based diagnosis sub-system
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Outline

• Model-Based Autonomy and Livingstone

• Symbolic Model Checking and SMV

• Verification of Livingstone Models
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Model ...

Controller

Planner MIRExec

Modeling
Abstraction

Verification
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Model Checking

Controller

Planner MIRExec

“Valve is closed when
Tank is empty”

AG (tank=empty
=> valve=closed)

Modeling
Abstraction

Verification
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Symbolic Model Checking

Instead of considering each individual state,

Symbolic model checking...
x
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Symbolic Model Checking

Instead of considering each individual state,

Symbolic model checking...

• Manipulates sets of states,
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Symbolic Model Checking

Instead of considering each individual state,

Symbolic model checking...

• Manipulates sets of states,

• Represented as boolean formulas,

x

y

0 1 2 ...
0

1
...

x=2 ∨ y=1
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Symbolic Model Checking

Instead of considering each individual state,

Symbolic model checking...

• Manipulates sets of states,

• Represented as boolean formulas,

• Encoded as binary decision diagrams.

x

y

0 1 2 ...
0

1
...

x=2 ∨ y=1

1 0

x=2

y=1
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Symbolic Model Checking

Instead of considering each individual state,

Symbolic model checking...

• Manipulates sets of states,
– Can handle very large state spaces (1050 +)

• Represented as boolean formulas,
– Suited for boolean/abstract models

• Encoded as binary decision diagrams.
– The limit is BDD size (hard to control)

x

y

0 1 2 ...
0

1
...

x=2 ∨ y=1

1 0

x=2

y=1



© Charles Pecheur 14ULg 12 Nov 2001

Boolean Functions

• Represent a state as boolean variables

s = b1, ..., bn

Non-boolean variables => use boolean encoding

• A set of states as a boolean function

s in S  iff   f(b1, ..., bn) = 1

• A transition relation as a boolean function over
two states

s → s'  iff  f(b1, ..., bn, b'1, ..., b'n) = 1
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Binary Decision Trees

• Encoding for boolean functions

• Notational convention:
= if  c then e else e'
= (c ? e : e')

• Always exists
but not unique

a

b

c

01

1

c

01c

e e'

(a | b) => c
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From Trees to Diagrams

• Fixed variable ordering
"layered" tree

a

b

c

0 1 0 1 1101

c c c

b

(a | b) => c
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From Trees to Diagrams

• Fixed variable ordering
"layered" tree

• Merge equal subtrees

a

b

c

0 1 0 1 1101

c c c

b

(a | b) => c
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From Trees to Diagrams

• Fixed variable ordering
"layered" tree

• Merge equal subtrees

• Remove nodes with
equal subtrees

=> Ordered Binary Decision Diagram

a

b

01

c c

b

(a | b) => c
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[Ordered] Binary
Decision Diagrams

• [O]BDDS for short

• Unique normal form
– for a given ordering and

– up to isomorphism

=> compare in constant time
(using hash table)

a

b

01

c

(a | b) => c
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Computations with BDDs

• All needed operations can be efficiently computed
using BDDS

• Example: boolean combinator f&g:
(b ? f' : f'') & (b ? g' : g'') = (b ? f'&g' : f''&g'')
cache results –> O(|f|.|g|) time

• Other operations:
– Negation !f
– Instantiation f[b=1], f[b=0]
–  Quantifiers exists b . f, forall  b . f
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Transition Systems with BDDs

Given boolean state variables v = b1, ..., bn

a set of states as a BDD p(v)

a transition relation as a BDD T(v, v')

we can compute the predecessors and successors of p as
BDDs:

(pred p)(v) = exists v' . T(v, v') & p(v')

(succ p)(v) = exists v' . p(v') & T(v', v)

ppred p succ p
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CTL temporal logic

Computation Tree Logic (branching):
Consider the tree of possible executions

Always ...

Sometimes ...

... Next p ... Globally p ... Finally p ... p Until q

AX  p A[p U q]AG p AF p

EX p E[p U q]EG p EF p

duals

In all states

In some state
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Example: compute EF p from p with BDDs:

EF p = lfp  U . (p | EX U)

= least solution of U = p | EX U
U0 = 0

U1 = p | EX U0 = p

...

Un+1 = p | EX Un = p | EX p | ... | EXn p

until Un = Un+1 = EF p

– Convergence assured because finite domain

– Backward search from p to EF p

Evaluating CTL
with BDDS

p

 p | EX p

EF p

p | EX (p | EX p)

0
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Variable Ordering

• Must be the same for all BDDs

• Size of BDDs depends critically on ordering

• Worst case: exponential w.r.t. #variables
– sometimes exponential for any ordering

e.g. middle output bit of n-bit multiplier

• Finding optimum is hard (NP-complete)
=> optimization uses heuristics
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SMV

• SMV = Symbolic Model Verifier.

• Modeling language based on parallel assignments.

• Specifications in temporal logic CTL.

• BDD-based symbolic model checking.

• Several versions:
– (CMU) SMV: original work by McMillan (Carnegie Mellon)
– NuSMV: clean re-writing, faster (ITC-IRST and CMU)

– Cadence SMV: following McMillan (Cadence Berkeley Labs)
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What SMV Does

MODULE user( ...) ...

MODULE main
VAR turn: {1 , 2};
    user1: u ser(...);
...

SPEC AG !(
    (user1.s tate = c) &
    (user2.s tate = c))

-- specifica tion AG ...
   is false
-- as demons trated by ...
state 1.1:
turn = 1
user1.state = n
user2.state = n

state 1.2:
...

resources us ed: ...

smv mutex.smv

Model

Counter-example
Specification

mutex.smv <stdout>
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SMV Program
Example (1/2)

MODULE user(turn,id,other)
VAR state: {n, t, c};
DEFINE my_turn :=
   (other=n) | ((other=t) & (turn=id));
ASSIGN
init(state) := n;
next(state) := case
   (state = n) : {n, t};
   (state = t) & my_turn: c;
   (state = c) : n;
   1 : state;
esac;

SPEC AG((state = t) -> AF (state = c))

n

t

c
my_turn

!my_turn
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SMV Program
Example (2/2)

MODULE main
VAR turn: {1, 2};
    user1: user(turn, 1, user2.state);
    user2: user(turn, 2, user1.state);
ASSIGN
init(turn) := 1;
next(turn) := case
   (user1.state=n) & (user2.state=t): 2;
   (user2.state=n) & (user1.state=t): 1;
   1: turn;
esac;

SPEC AG !((user1.state=c) & (user2.state=c))
SPEC AG !(user1.state=c)     -- false!
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Diagnostic Trace
Example

-- specification AG (state = t -> AF state = c) (in module
user1) is true

-- specification AG (state = t -> AF state = c) (in module
user2) is true

-- specification AG (!(user1.state = c & user2.state = c)...
is true

-- specification AG (!user1.state = c) is false
-- as demonstrated by the followin g execution sequence
state 1.1:
turn = 1
user1.state = n
user2.state = n

state 1.2:
user1.state = t

state 1.3:
user1.state = c
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• The SMV program defines:
– a finite transition model M (Kripke structure),
– a set of possible initial states I (may be several),
– specifications P1 .. Pm (CTL formulas).

• SMV checks that each specification P is satisfied
in all initial states so of model M.

∀ so ∈ I  .  M, so = P

The Essence of SMV



© Charles Pecheur 31ULg 12 Nov 2001

Outline

• Model-Based Autonomy and Livingstone

• Symbolic Model Checking and SMV

• Verification of Livingstone Models
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Livingstone Models

• concurrent transition
systems (components)

• synchronous product

• enumerated types
=> finite state

Essentially ≈ SMV model

+ nominal/fault modes,
commands/monitors (I/O),
probabilities on faults, ...

ClosedClosed

ValveValve

OpenOpen StuckStuck
openopen

StuckStuck
closedclosed

OpenOpen CloseClose

inflow = outflow = zero

Courtesy Autonomous Systems Group, NASA Ames

p=0.001p=0.001

p=0.01p=0.01

Diagnosis = find the most likely assumptions (modes)
that are consistent with the observations (commands/monitors)

inflow = outflow

inflow, outflow : {zero,low,high}
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Large State Space?
• Example: model of ISPP = 7.16·1055 states
• This is only the Livingstone model – a complete

verification model could be
Exec driver (10-100 states)

x Spacecraft simulator (1055 states)
x Livingstone system (keeps history – 10n·55 states)

• Verify a system that analyzes a large state space!
• Approach: the model is the program

– Verify it (using symbolic model checking)
– Assume Livingstone correct (and complete)
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MPL2SMV

Livingstone
Model

SMV
Model

Livingstone
Requirement

SMV
Requirement

Livingstone
Trace

SMV
Trace

Livingstone

SMV

M
P
L

2

S
M
V

Autonomy Verification
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Translator from Livingstone
to SMV

• Co-developed with CMU (Reid Simmons)
• Similar semantics => translation is easy
• Properties in temporal logic + pre-defined patterns
• Initially for Livingstone 1 (Lisp),

upgraded to Livingstone 2 (C++/Java)
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(load "mpl2smv.lisp")
;; load the translator
;; Livingstone not needed!

(translate "ispp.lisp" "ispp.smv")
;; do the translation

(smv "ispp.smv")
;; call SMV
;; (as a sub-process)

Principle of Operations

(defcomponent  heater …)
(defmodule valve-mod …)
…
(defverify
  :structure ( ispp )
  :specification (all (gl obally …)))

(defcomponent  heater …)
(defmodule valve-mod …)
…
(defverify
  :structure ( ispp )
  :specification (all (gl obally …)))

MODULE Mheater …
MODULE Mvalve-mod …
…
MODULE main
VAR Xispp :Mispp
SPEC AG …

MODULE Mheater …
MODULE Mvalve-mod …
…
MODULE main
VAR Xispp :Mispp
SPEC AG …

Specification AG … is fal se as shown …
State 1.1: …
State 1.2: …

Specification AG … is fal se as shown …
State 1.1: …
State 1.2: …

ispp.lisp

ispp.smv

SMV output

Lisp shell
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Simple Properties

• Supported by the translator:
– syntax sugar

– iterate over model elements (e.g. all component modes)

• Examples
– Reachability (no dead code)

EF heater.mode = on

– Path Reachability (scenario)
AG  (s1 –> EF (s2 & EF (s3 & EF s4)))
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Probabilistic Properties

• Use probabilities associated to failure transitions

• Use order of magnitude: -log(p), rounded to a
small integer

• Combine additively, OK for BDD computations

• Approximate – but so are the proba. values

heater.mode = overheat -> heater.proba = 2;      (p = 0.01)

proba = heater.proba + valve.proba + sensor.proba;

SPEC AG (broken  &  proba < 3  –>  EF working)



© Charles Pecheur 39ULg 12 Nov 2001

Functional Dependency

• Check that y=f(x) for some unknown f
• Use universally quantified variables in CTL

= undetermined constants in SMV
VAR x0,y0 : {a,b,c};
TRANS next(x0) = x0
TRANS next(y0) = y0
SPEC (EF x=x0 & y=y0) –> (AG x=x0 –> y=y0)

• Limitation: counter-example needs two traces,
SMV gives only one
=> instantiate second half by hand, re-run SMV

≈ ∀ x0, y0
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Temporal Queries

• Temporal Query = CTL formula with a hole:
AG (? –> EF working)

• Search (canonical) condition for ? that satisfies the
formula (computable for useful classes of queries)

• Recent research, interrupted (William Chan,
†1999)

• Problem: visualize solutions (CNF, projections, ...)

• Core algorithm implemented in NuSMV
(Wolfgang Heinle)

• Deceptive initial results, to probe further
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SMV with Macro Expansion

• Custom version of SMV (Bwolen Yang, CAV 99)

• Eliminates variables by Macro Expansion:
– analyzes static constraints of the model (invariants),

– find dependent variables x=f(x1,...,xn),
– substitute f(x1,...,xn) for x everywhere,

– eliminate x from the set of BDD variables.

• For models with lots of invariants
=> useful for Livingstone models

• Full ISPP model in < 1 min, vs. SMV runs out of
memory.
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ISPP Model Statistics

• In Situ Propellant Production (ISPP)
= turn Mars atmosphere into rocket fuel (NASA KSC)

• Original model state = 530 bits (trans. = 1060 bits)

•  Total BDD vars 588 bits
Macro expanded -209 bits
Reduced BDD vars 379 bits

• Reachable state space7.16·1055 = 2185.5

Total state space 1.06·1081 = 2269.16

• Reachability of all modes (163):
29.14" CPU time in 63.6 Mb RAM



© Charles Pecheur 43ULg 12 Nov 2001

Diagnosis Properties

• Can fault F always be diagnosed?
(assuming perfect diagnosis and accurate model)
= is F unambiguously observable?
∀ obs0 . (EF F & obs=obs0) –> (AG F –> obs=obs0)

• Similar to functional dependency

• obs = observable variables (many of them)

• Static variant (ignore transitions):
SAT on two states S, S' such that
F & ! F' & obs=obs'
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• Very recent (yesterday), with Alessandro Cimatti

• Can fault F be diagnosed knowing the last n steps?

• Apply SAT to:

• Variants are possible (e.g. fork at n-1 intead of 0)

Diagnosis Properties Revisited

...

x0

x1

x1'

x2

x2'

xn

xn'

T

T

T

T

T

T

T

T

cmd
obs

cmd
obs

cmd
obs

F

! F...
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Diagnosis Properties (cont'd)

• Does it work?
– Computational cost of extra variables

• Has it been done?
– Similar work in hardware testability?

• Is it useful?
– It is unrealistic to expect all faults to be immediately

observable (e.g. valve closed vs. stuck-closed)

– What weaker properties? Are they verifiable?

• To be explored
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Summary

• Verification of model-based diagnosis:
– Space flight => safety critical.
– Huge state space (w.r.t. fixed command sequence).

• Focus on models (the model is the program)
• Quite different from executable programs

– Loose coupling, no threads of control, passive.
– Huge but shallow state spaces.

• Symbolic model checking is very appropriate
• Verify well-formedness + validity w.r.t. hardware
• Verify suitability for diagnosis: to be explored
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Thank You



© Charles Pecheur 48ULg 12 Nov 2001

Symbolic Model Checking
References

R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE
Transactions on Computers, C-35(8):677-691, 1986.

The seminal paper on Binary Decision Diagrams.

J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and J. Hwang. Symbolic
model checking: 10^20 states and beyond. Information and Computation, vol.
98, no. 2, 1992.

Survey paper on the principles of  symbolic model checking.

Armin Biere, Alessandro Cimatti, Edmund Clarke, and Yunshan Zhu. Symbolic
model checking without BDDs. In W. R. Cleaveland, ed., Tools and
Algorithms for the Construction and Analysis of Systems (TACAS),
Amsterdam, March 1999.

Paper on SAT-based bounded model checking.



© Charles Pecheur 49ULg 12 Nov 2001

Symbolic Model Checking
References (cont'd)

J. R. Burch, E. M. Clarke, K. L. McMillan, and D. L. Dill. Sequential circuit
verification using symbolic model checking. In 27th ACM/IEEE Design
Automation Conference, 1990.

Symbolic model checking of CTL with fairness.

E. Clarke, O. Grumberg, H. Hamaguchi.  Another Look at LTL Model Checking.
Formal Methods in System Design, Volume 10, Number 1, February 1997.

Verifying LTL using symbolic model checking.



© Charles Pecheur 50ULg 12 Nov 2001

SMV
References

Ken McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.

Based on Ken McMillan's PhD thesis on SMV.

Ken L. McMillan. The SMV System (draft). February 1992.
http://www.cs.cmu.edu/~modelcheck/smv/smvmanual.r2.2.ps

The (old) user manual provided with the SMV program.

A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri. NuSMV: A New Symbolic
Model Verifier. In N. Halbwachs and D. Peled, eds., Proceedings of
International Conference on Computer-Aided Verification (CAV'99), LNCS
1633:495-499, Springer Verlag.

Survey paper on NuSMV.


